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Forced nonharmonic excitation of the two-dimensional flow about a circular cylinder is studied by numerical
simulations at mean Reynolds numbers of 180 and 150. Moderate deviations of the forced inflow velocity
waveform from a pure harmonic generate different modes of phase-locked vortex formation in the cylinder
wake, involving combinations of single and/or pairs of vortices for the same forcing frequency and peak-to-
peak amplitude. The dynamical response of the wake oscillator is studied by employing phase portraits of the
drag and lift coefficients that display modified limit-cycle behavior due to nonharmonic excitation. It is further
shown that changing solely the velocity waveform can incite transition from a quasiperiodic state to a phase-
locked state. The findings demonstrate that the wake oscillator is admissible to an infinite number of phase-
locked and/or modulated states characterized by a single point on the frequency-amplitude plane.
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The flow in the wake of a bluff body behaves as a self-
excited fluid oscillator above a critical Reynolds number.
The onset of global wake oscillations occurs through a Hopf
bifurcation as explained from hydrodynamic stability theory
�1�. In the observation domain, this instability is manifested
by the formation of a spatiotemporal flow pattern well
known as the Kármán vortex street. Beyond the critical point
further instabilities lead progressively to three dimensional-
ity and turbulence in the wake as a function of the Reynolds
number �2�. The vorticity dynamics in the near wake play an
essential role in determining the frequency of the primary
instability in the absence of external perturbations �3�. From
the dynamical systems point of view, when the fluid oscilla-
tor is externally forced, it is possible to attain wake states
that are strictly periodic or phase locked, quasiperiodic or
modulated, and/or chaotic in general �4,5�. The wake flow
can be thought of as a nonlinear oscillator whose limit-cycle
behavior is modified by forcing generating a rich variety of
orbits in phase space. Such a response is commensurate to
the modes of vortex formation in bluff-body wakes that have
been observed in numerous studies where the Kármán mode
is perturbed by rectilinear or rotational oscillations of the
body, inflow pulsations, sound waves, and other types of
excitation, e.g., see Refs. �6–9�. The dynamical response of
the wake oscillator to any forced excitation displays notable
similarities as a function of the forcing frequency and ampli-
tude, parameters which define completely the waveform for
harmonic drivers, along with the Reynolds number which
acts as an intrinsic excitation. Coupling effects are most vis-
ible in an envelope on the frequency-amplitude plane around
the intrinsic frequency of the flow instability in the absence
of forcing where phase locking occurs �alias the lock-on
range�. Within this range, the modes and phasing of vortex
formation, the fluid-dynamic forces on the cylinder and the
time-averaged properties of the flow can be controlled within
limits by the forced excitation. Hence, the forcing frequency
and amplitude provide a means for optimization of the flow
parameters to a given task, e.g., drag reduction, mixing en-

hancement, flow destabilization, control, etc. An important
aspect of the present work is that new control possibilities
exist by adjusting the waveform of the forcing drivers.

The fluid dynamics of bluff cylinders in forced harmonic
oscillation have traditionally been employed to study and
model interactions occurring in coupled fluid-mechanical os-
cillators, e.g., the vortex-induced vibration of hydroelastic
cylinders �10,11�. The use of harmonic forcing poses a limi-
tation on the spectrum of response characteristics and asso-
ciated energy transfer between the fluid and the cylinder
since the actual vibration is seldom a pure harmonic oscilla-
tion. Therefore, it seems rational to examine nonharmonic
periodic functions as forcing terms and address their effect
on the system dynamics. For example, nonharmonic forcing
has been previously employed to switch the response of a
nonlinear parametric pendulum �12�. Such a forcing has a
well-defined periodic waveform which comprises an infinite
number of harmonics; to our knowledge there are no similar
studies of nonharmonic forcing in spatially extended systems
as is the wake of a bluff body.

In this work, we show that the modes of vortex formation
in the wake of a circular cylinder and the fluid loading on the
cylinder are sensitive to nonharmonic forcing even for driv-
ers of the same period and amplitude. This study is limited to
laminar and two-dimensional �2D� cylinder wakes for which
the response to external forcing is deterministic in the ab-
sence of stochastic perturbations �13�. Although 2D simula-
tions inherently hold a simplifying assumption compared
to three-dimensional �3D� approaches, it is expected that
for the parameters employed in this study the physics of
shear layer separation and eventual vortex formation in the
near wake remain laminar and two dimensional. The conti-
nuity and Navier-Stokes equations for an incompressible
fluid were solved numerically on an orthogonal curvilinear
mesh with sufficient resolution �299�208� to produce mesh-
independent results. The code is based on the SIMPLE algo-
rithm employing first-order implicit Euler discretization for
integration in time, while for the spatial discretization a
second-order bounded upwind scheme and central differenc-
ing were employed for the convection and diffusion terms,
respectively. Further details of the numerical method can be
found in Ref. �14�. The computational domain is rectangular,
34 dimensionless units long and 20 wide which is large
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enough to produce results independent of the location of the
boundaries �15�. At the inflow boundary of the computational
domain a time-dependent velocity waveform is prescribed in
order to act as an excitation source. A no-slip condition is
imposed on the cylinder surface, symmetry conditions are
employed at the lateral boundaries, whereas at the outflow
boundary a free-convection condition is employed. In the
presentation of the results the variables are normalized using
the diameter of the cylinder and the reference velocity.

Figure 1�a� shows vortex formation in the natural wake
without forcing. The Kármán vortex street consisting of an
alternating row of oppositely rotating vortices is well repro-
duced by the simulation. The fluctuating drag and lift forces
exerted on the cylinder due to vortex shedding and their
magnitude spectra are shown in Figs. 1�b� and 1�c�, respec-
tively. The computed values of the mean drag coefficient
�CD=1.33� and of the fluctuating lift coefficient �CL�
=0.643� are consistent with other published data �16�. The
lift and drag spectra exhibit a dominant peak at the Strouhal
frequency fSt=0.192 and its first superharmonic, respec-
tively. It is observed that both components contain an infinite
number of superharmonics of the main frequency with sub-
stantially lower but finite magnitude. This salient observation
indicates that the self-excited wake flow is indeed a nonlin-
ear oscillator, and it might be anticipated that nonharmonic
excitation containing an infinite number of harmonics can
interact with the bluff-body vortex dynamics in a different
way compared to pure harmonic excitation, as subsequently
shown.

Forced excitation was invoked by a velocity perturbation
in the inflow boundary using waveforms U�t� generated by
the following function:

U�t� = �1 + � sin2��t + ���n + � , �1�

where � is the cyclic frequency of forcing, �, �, and n, are
parameters that control the amplitude of the velocity pertur-

bation, the average flow velocity, and the waveform of the
drivers, respectively. The period and the profile of the wave-
forms generated by Eq. �1� are independent of � and �. A
phase shift � was employed so that the velocity at zero time
is also equal to the average of the minimum and maximum
velocities in the waveform U0= 1

2 �Umax+Umin�=1 in all
cases. In this way, the same flow field at the end of the run
without forcing could be used as an initial field for all the
simulations of forced wakes. For n=1, a pure harmonic ex-
citation at twice the nominal forcing frequency is obtained.
Harmonic forcing provides here the basis for comparisons of
the wake response. Figure 2 shows the nonharmonic wave-
forms for n=0.2 and −1 together with the harmonic one
�n=1� employed in the present study. The other two vari-
ables, � and �, were adjusted so that the minimum and maxi-
mum velocities remain the same as in the pure harmonic to
allow comparisons between different waveforms. The fre-
quency content of the nonharmonic velocity waveforms is
also shown in Fig. 2. The spectral peak at the main forcing
frequency in both nonharmonic velocity waveforms is indis-
tinguishable from that in the pure harmonic and contains
more than 93.5% of the total kinetic energy, i.e., the devia-
tion from the harmonic waveform can be characterized as
moderate.

Initially, we present results for simulated flows with
purely harmonic and nonharmonic forcing at Re=180 based
on the reference velocity at zero time U0, the cylinder diam-
eter, and the fluid kinematic viscosity. The ratio of the forc-
ing frequency to that of natural vortex shedding in the un-
forced wake fSt was set to �=0.84. The other variables �
and � were adjusted so that the maximum and minimum
velocities are 1�0.325, respectively. The parameter
�=max�U�t�−U0�=0.325 defines the dimensionless ampli-
tude of forced excitation and provides a measure of the non-
linear coupling between the forced and self-excitation
modes.

Figure 3 provides some representative results from the

FIG. 1. Characteristics of the natural cylinder wake in the ab-
sence of forcing at Re=180. �a� Particle visualization of the wake,
�b� time history of the force coefficients, and �c� magnitude spectra
of the force coefficients. Grey and black lines in �b� and �c� corre-
spond to the drag and lift coefficients, respectively.

FIG. 2. �a� Plot of some velocity waveforms U�t� with equal
period and peak-to-peak amplitude used to perturb the inflow. Fre-
quency content of the fluctuating part U� of the nonharmonic ve-
locity waveforms; �b� n=0.2 and �c� n=−1.
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simulations by means of particle visualization �17�. For
purely harmonic forcing �n=1�, an asymmetric pattern with
respect to the centerline is observed; the vortex street com-
prises a combination of single, and pairs of vortices shed
from alternate sides of the cylinder. Closer examination
shows that a vortex pair is actually formed on either side.
However, the secondary vortex from the lower side is ab-
sorbed by the initial vortex shed from the same side. On the
other �upper� side, the shed vortices maintain their integrity
as they are convected downstream. This asymmetric mode of
vortex formation has been consistently observed in a number
of studies, both numerical and experimental, dealing with
forced wakes �6,18–21�. Nonharmonic excitation may pro-
mote the formation of either distinct individual or pairs of
vortices depending on the velocity waveform as shown in
Fig. 3. For n=0.2, the secondary vortices almost disappear
and the ensuing vortex street comprises a row of alternating
single vortices with opposite sense of rotation similar to that
observed in the natural wake. However, in the forced wake
the vortices from the upper side are convected below the
centerline after being shed, and vice versa. Another differ-
ence is that the longitudinal spacing between vortices is ex-
panded in the forced wake since the period of vortex forma-
tion is prolonged. For n=−1, distinct vortex pairs are formed
on both sides; the initial vortices are less pronounced than
the secondary ones as indicated by the concentration of
tracer particles in the vortex cores. This mode of vortex for-
mation leads to an unstable vortex street and vortices with
the same sense of rotation tend to coalesce further down-
stream, e.g., ten diameters from the cylinder. Effectively, this
is a 2D numerical simulation that captures the shedding of
vortex pairs in forced laminar bluff-body wakes.

The temporal dynamics of the forced cylinder wakes is
characterized by the phase portraits of the fluctuating drag
CD�t� and lift CL�t� coefficients shown in Fig. 4. The abscissa
a�t� and the ordinate b�t� in the plots were computed from
the instantaneous force coefficients as

a�t� = CD� �t�sin�2�t�, b�t� = CD� �t�cos�2�t� �2�

for the drag component, and

a�t� = CL��t�sin��t�, b�t� = CL��t�cos��t� �3�

for the lift component, where the primes denote the fluctuat-
ing part only �mean value subtracted�, and the instantaneous
velocity was used for the normalization of the forces. Such
plots provide information on the instantaneous magnitude,
�a2+b2�1/2, and the phase angle, arctan�b /a�, of time-
dependent signals with respect to forcing �22�. We employ
the analysis on the drag and lift signals because they repre-
sent the integrated effect of the vortex dynamics and illus-
trate its modification by nonharmonic forcing.

The response of the drag coefficient, though phase locked
with the forcing �limit cycle�, is far from a circular orbit �i.e.,
harmonic� for both harmonic and nonharmonic excitations.
In fact, the phase portrait of CD�t� follows a different orbit
for even and odd cycles, illustrating the effect of the asym-
metric mode of vortex formation under harmonic forcing
which persists even when no identifiable asymmetry is ob-
served in the wake structure under nonharmonic forcing. In-
terestingly, the phase portrait of CL�t� displays a limit-cycle
behavior without any notable deviation between even and
odd cycles of forced excitation. However, it is observed that
the final periodic state for n=0.2 is shifted by half a period,
i.e., vortices are shed from opposite sides of the cylinder for
even and odd cycles compared to the other two cases. Unlike
CD�t�, the lift component is not directly affected by the forc-
ing which acts only in the flow direction and the modified
limit cycles of CL�t� can be solely attributed to the changes
in the vortex dynamics around the body.

A survey of computations was carried out on the
frequency-amplitude �� ,�� plane near the boundaries of the

FIG. 3. Modes of vortex formation in forced cylinder wakes for
harmonic and nonharmonic excitation waveforms; �a� n=1, �b� n
=0.2, and �c� n=−1

FIG. 4. Phase portraits of the fluctuating drag �upper row� and
lift coefficients �lower row� for different velocity waveforms.
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lock-on envelope where transition between lock-on and non-
lock-on responses occurs for harmonic forcing. It was found
that changing solely the forcing waveform can incite transi-
tion from a quasiperiodic non-lock-on to a phase-locked state
as illustrated in Fig. 5. This clearly indicates that the wake

oscillator is admissible to different dynamical states corre-
sponding to a single point in the �� ,�� plane but different
waveforms. Nevertheless, it should be noted that the dynami-
cal states observed in the present study are possibly few out
of an infinite number of admissible states in bluff-body
wakes. While the corresponding modes of vortex formation
are similar for both harmonic and nonharmonic forcings
most of the time, Fig. 5 shows an instant where the vortex
mode for the harmonic case sporadically deviates from that
for nonharmonic excitation.

In conclusion, the importance of the present findings is
not simply due to the considerable and new effects that non-
harmonic forcing has on bluff-body vortex dynamics; they
also have practical implications for the corresponding prob-
lem of self-sustained vortex-induced vibration of hydroelas-
tic cylinders. Vortex-induced vibration involves cross excita-
tion of the wake �fluid oscillator� and the cylinder vibration
�mechanical oscillator� resulting in a nonlinear dynamical
system. In this case, a question arises as to the selection of a
dynamical state by such a coupled system. Based on the
outcome of the present study it is suggested that coupled
fluid-mechanical oscillators, where the response variables
�i.e., the frequency and amplitude of oscillation� are deter-
mined by nonlinear interactions and energy balances, can be
characterized by a continuously modulated periodic state
around an equilibrium point on the frequency-amplitude
plane. In other words, a hydroelastic cylinder can continu-
ously adapt its dynamics to an infinite number of admissible
states so as to exhibit self-sustained oscillations. This sce-
nario can account for the fact that most of the free vibration
occurs near the boundaries of the lock-on envelope or even
where forced harmonic vibration studies indicate lack of lock
on �23�. Similar effects are visible when a mechanical oscil-
lator with two degrees of freedom conspires with the vortex
dynamics in turbulent wakes to cause even stronger nonhar-
monic perturbations which lead to the shedding of vortex
triplets �24�.
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FIG. 5. Phase portraits of CD� �t� in the first row and CL��t� in the
second row for two different velocity waveforms, n=−1 and 1, and
the corresponding modes of vortex formation in the wake, below.
Forced excitation: Re=150, �=0.75, and �=0.20.
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